翻訳と辞書
Words near each other
・ Thompsonia (barnacle)
・ Thompsoniidae
・ Thompsons Bus Service
・ Thompsons Island Site
・ Thompsons Road, Melbourne
・ Thompsons, Texas
・ Thompson Mills Forest
・ Thompson Ministry
・ Thompson Mortuary Chapel
・ Thompson Mountain
・ Thompson Nunataks
・ Thompson Observatory
・ Thompson Okanagan Junior Lacrosse League
・ Thompson Okanagan Senior Lacrosse League
・ Thompson Oliha
Thompson order formula
・ Thompson Park
・ Thompson Park (Charlotte, North Carolina)
・ Thompson Pass
・ Thompson Peak
・ Thompson Peak (Antarctica)
・ Thompson Peak (Arizona)
・ Thompson Peak (California)
・ Thompson Peak (Idaho)
・ Thompson Peaks
・ Thompson Peninsula
・ Thompson Phillips
・ Thompson Plateau
・ Thompson Point
・ Thompson Pond


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Thompson order formula : ウィキペディア英語版
Thompson order formula
In mathematical finite group theory, the Thompson order formula, introduced by John Griggs Thompson , gives a formula for the order of a finite group in terms of the centralizers of involutions, extending the results of .
==Statement==

If a finite group ''G'' has exactly two conjugacy classes of involutions with representatives ''t'' and ''z'', then the Thompson order formula states
:|G| = |C''G''(''z'')|''a''(''t'') + |C''G''(''t'')|''a''(''z'')
Here ''a''(''x'') is the number of pairs (''u'',''v'') with ''u'' conjugate to ''t'', ''v'' conjugate to ''z'', and ''x'' in the subgroup generated by ''uv''.
gives the following more complicated version of the Thompson order formula for the case when ''G'' has more than two conjugacy classes of involution.
:|G| = C_G(t)C_G(z) \sum_x\frac
where ''t'' and ''z'' are non-conjugate involutions, the sum is over a set of representatives ''x'' for the conjugacy classes of involutions, and ''a''(''x'') is the number of ordered pairs of involutions ''u'',''v'' such that ''u'' is conjugate to ''t'', ''v'' is conjugate to ''z'', and ''x'' is the involution in the subgroup generated by ''tz''.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Thompson order formula」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.